Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 59(27): 2562-2575, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32627538

RESUMO

Antibiotic resistance continues to spread at an alarming rate, outpacing the introduction of new therapeutics and threatening to globally undermine health care. There is a crucial need for new strategies that selectively target specific pathogens while leaving the majority of the microbiome untouched, thus averting the debilitating and sometimes fatal occurrences of opportunistic infections. To address these challenges, we have adopted a unique strategy that focuses on oxygen-sensitive proteins, an untapped set of therapeutic targets. MqnE is a member of the radical S-adenosyl-l-methionine (RS) superfamily, all of which rely on an oxygen-sensitive [4Fe-4S] cluster for catalytic activity. MqnE catalyzes the conversion of didehydrochorismate to aminofutalosine in the essential menaquinone biosynthetic pathway present in a limited set of species, including the gut pathogen Helicobacter pylori (Hp), making it an attractive target for narrow-spectrum antibiotic development. Indeed, we show that MqnE is inhibited by the mechanism-derived 2-fluoro analogue of didehydrochorismate (2F-DHC) due to accumulation of a radical intermediate under turnover conditions. Structures of MqnE in the apo and product-bound states afford insight into its catalytic mechanism, and electron paramagnetic resonance approaches provide direct spectroscopic evidence consistent with the predicted structure of the radical intermediate. In addition, we demonstrate the essentiality of the menaquinone biosynthetic pathway and unambiguously validate 2F-DHC as a selective inhibitor of Hp growth that exclusively targets MqnE. These data provide the foundation for designing effective Hp therapies and demonstrate proof of principle that radical SAM proteins can be effectively leveraged as therapeutic targets.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Vias Biossintéticas/efeitos dos fármacos , Radicais Livres/química , Helicobacter pylori/crescimento & desenvolvimento , S-Adenosilmetionina/metabolismo , Vitamina K 2/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Estrutura Molecular , Nucleosídeos/metabolismo
2.
J Biol Chem ; 294(35): 13158-13170, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31315931

RESUMO

Iron-sulfur clusters are protein cofactors with an ancient evolutionary origin. These clusters are best known for their roles in redox proteins such as ferredoxins, but some iron-sulfur clusters have nonredox roles in the active sites of enzymes. Such clusters are often prone to oxidative degradation, making the enzymes difficult to characterize. Here we report a structural and functional characterization of dihydroxyacid dehydratase (DHAD) from Mycobacterium tuberculosis (Mtb), an essential enzyme in the biosynthesis of branched-chain amino acids. Conducting this analysis under fully anaerobic conditions, we solved the DHAD crystal structure, at 1.88 Å resolution, revealing a 2Fe-2S cluster in which one iron ligand is a potentially exchangeable water molecule or hydroxide. UV and EPR spectroscopy both suggested that the substrate binds directly to the cluster or very close to it. Kinetic analysis implicated two ionizable groups in the catalytic mechanism, which we postulate to be Ser-491 and the iron-bound water/hydroxide. Site-directed mutagenesis showed that Ser-491 is essential for activity, and substrate docking indicated that this residue is perfectly placed for proton abstraction. We found that a bound Mg2+ ion 6.5 Å from the 2Fe-2S cluster plays a key role in substrate binding. We also identified a putative entry channel that enables access to the cluster and show that Mtb-DHAD is inhibited by a recently discovered herbicide, aspterric acid, that, given the essentiality of DHAD for Mtb survival, is a potential lead compound for the design of novel anti-TB drugs.


Assuntos
Aminoácidos de Cadeia Ramificada/biossíntese , Hidroliases/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mycobacterium tuberculosis/química , Aminoácidos de Cadeia Ramificada/química , Sítios de Ligação , Hidroliases/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Conformação Molecular , Mycobacterium tuberculosis/metabolismo
3.
J Biol Chem ; 293(28): 10857-10869, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29784878

RESUMO

The underexploited antibacterial target 1-deoxy-d-xyluose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP). DXP is an essential intermediate in the biosynthesis of ThDP, pyridoxal phosphate, and isoprenoids in many pathogenic bacteria. DXP synthase catalyzes a distinct mechanism in ThDP decarboxylative enzymology in which the first enzyme-bound pre-decarboxylation intermediate, C2α-lactyl-ThDP (LThDP), is stabilized by DXP synthase in the absence of d-GAP, and d-GAP then induces efficient LThDP decarboxylation. Despite the observed LThDP accumulation and lack of evidence for C2α-carbanion formation in the absence of d-GAP, CO2 is released at appreciable levels under these conditions. Here, seeking to resolve these conflicting observations, we show that DXP synthase catalyzes the oxidative decarboxylation of pyruvate under conditions in which LThDP accumulates. O2-dependent LThDP decarboxylation led to one-electron transfer from the C2α-carbanion/enamine to O2, with intermediate ThDP-enamine radical formation, followed by peracetic acid formation en route to acetate. Thus, LThDP formation and decarboxylation and DXP formation were studied under anaerobic conditions. Our results support a model in which O2-dependent LThDP decarboxylation and peracetic acid formation occur in the absence of d-GAP, decreasing the levels of pyruvate and O2 in solution. The relative pyruvate and O2 concentrations then dictate the extent of LThDP accumulation, and its buildup can be observed when [pyruvate] > [O2]. The finding that O2 acts as a structurally distinct trigger of LThDP decarboxylation supports the hypothesis that a mechanism involving small molecule-dependent LThDP decarboxylation equips DXP synthase for diverse, yet uncharacterized cellular functions.


Assuntos
Bactérias/enzimologia , Oxigênio/metabolismo , Piruvatos/metabolismo , Tiamina Pirofosfato/metabolismo , Transferases/metabolismo , Catálise , Descarboxilação , Oxirredução , Especificidade por Substrato
4.
Med Mycol ; 56(4): 506-509, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992332

RESUMO

Melanization of Histoplasma capsulatum remains poorly described, particularly in regards to the forms of melanin produced. In the present study, 30 clinical and environmental H. capsulatum strains were grown in culture media with or without L-tyrosine under conditions that produced either mycelial or yeast forms. Mycelial cultures were not melanized under the studied conditions. However, all strains cultivated under yeast conditions produced a brownish to black soluble pigment compatible with pyomelanin when grew in presence of L-tyrosine. Sulcotrione inhibited pigment production in yeast cultures, strengthening the hyphothesis that H. capsulatum yeast forms produce pyomelanin. Since pyomelanin is produced by the fungal parasitic form, this pigment may be involved in H. capsulatum virulence.


Assuntos
Histoplasma/efeitos dos fármacos , Histoplasma/metabolismo , Tirosina/farmacologia , Animais , Meios de Cultura/química , Cicloexanonas/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histoplasma/citologia , Humanos , Concentração de Íons de Hidrogênio , Melaninas/genética , Melaninas/metabolismo , Mesilatos/farmacologia , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Virulência
5.
Cell ; 166(1): 126-39, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27368101

RESUMO

The HIF transcription factor promotes adaptation to hypoxia and stimulates the growth of certain cancers, including triple-negative breast cancer (TNBC). The HIFα subunit is usually prolyl-hydroxylated by EglN family members under normoxic conditions, causing its rapid degradation. We confirmed that TNBC cells secrete glutamate, which we found is both necessary and sufficient for the paracrine induction of HIF1α in such cells under normoxic conditions. Glutamate inhibits the xCT glutamate-cystine antiporter, leading to intracellular cysteine depletion. EglN1, the main HIFα prolyl-hydroxylase, undergoes oxidative self-inactivation in the absence of cysteine both in biochemical assays and in cells, resulting in HIF1α accumulation. Therefore, EglN1 senses both oxygen and cysteine.


Assuntos
Neoplasias da Mama/metabolismo , Cisteína/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Comunicação Parácrina , Neoplasias de Mama Triplo Negativas/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Ácido Glutâmico/metabolismo , Humanos , Células MCF-7 , Camundongos
6.
Biophys J ; 110(7): 1593-1604, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27074684

RESUMO

Kinesins-13s are members of the kinesin superfamily of motor proteins that depolymerize microtubules (MTs) and have no motile activity. Instead of generating unidirectional movement over the MT lattice, like most other kinesins, kinesins-13s undergo one-dimensional diffusion (ODD) and induce depolymerization at the MT ends. To understand the mechanism of ODD and the origin of the distinct kinesin-13 functionality, we used ensemble and single-molecule fluorescence polarization microscopy to analyze the behavior and conformation of Drosophila melanogaster kinesin-13 KLP10A protein constructs bound to the MT lattice. We found that KLP10A interacts with the MT in two coexisting modes: one in which the motor domain binds with a specific orientation to the MT lattice and another where the motor domain is very mobile and able to undergo ODD. By comparing the orientation and dynamic behavior of mutated and deletion constructs we conclude that 1) the Kinesin-13 class specific neck domain and loop-2 help orienting the motor domain relative to the MT. 2) During ODD the KLP10A motor-domain changes orientation rapidly (rocks or tumbles). 3) The motor domain alone is capable of undergoing ODD. 4) A second tubulin binding site in the KLP10A motor domain is not critical for ODD. 5) The neck domain is not the element preventing KLP10A from binding to the MT lattice like motile kinesins.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Cinesinas/metabolismo , Microtúbulos/metabolismo , Animais , Proteínas de Drosophila/química , Cinesinas/química , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Rotação
7.
Diabetes ; 64(9): 3273-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26294429

RESUMO

The assumption underlying current diabetes treatment is that lowering the level of time-averaged glucose concentrations, measured as HbA1c, prevents microvascular complications. However, 89% of variation in risk of retinopathy, microalbuminuria, or albuminuria is due to elements of glycemia not captured by mean HbA1c values. We show that transient exposure to high glucose activates a multicomponent feedback loop that causes a stable left shift of the glucose concentration-reactive oxygen species (ROS) dose-response curve. Feedback loop disruption by the GLP-1 cleavage product GLP-1(9-36)(amide) reverses the persistent left shift, thereby normalizing persistent overproduction of ROS and its pathophysiologic consequences. These data suggest that hyperglycemic spikes high enough to activate persistent ROS production during subsequent periods of normal glycemia but too brief to affect the HbA1c value are a major determinant of the 89% of diabetes complications risk not captured by HbA1c. The phenomenon and mechanism described in this study provide a basis for the development of both new biomarkers to complement HbA1c and novel therapeutic agents, including GLP-1(9-36)(amide), for the prevention and treatment of diabetes complications.


Assuntos
Complicações do Diabetes/metabolismo , Retroalimentação Fisiológica , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Glucose/metabolismo , Hiperglicemia/metabolismo , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Ferro/metabolismo , Potencial da Membrana Mitocondrial
8.
J Biol Chem ; 288(9): 6095-106, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23269673

RESUMO

Nitric-oxide synthase (NOS) catalyzes nitric oxide (NO) synthesis via a two-step process: L-arginine (L-Arg) → N-hydroxy-L-arginine → citrulline + NO. In the active site the heme is coordinated by a thiolate ligand, which accepts a H-bond from a nearby tryptophan residue, Trp-188. Mutation of Trp-188 to histidine in murine inducible NOS was shown to retard NO synthesis and allow for transient accumulation of a new intermediate with a Soret maximum at 420 nm during the L-Arg hydroxylation reaction (Tejero, J., Biswas, A., Wang, Z. Q., Page, R. C., Haque, M. M., Hemann, C., Zweier, J. L., Misra, S., and Stuehr, D. J. (2008) J. Biol. Chem. 283, 33498-33507). However, crystallographic data showed that the mutation did not perturb the overall structure of the enzyme. To understand how the proximal mutation affects the oxygen chemistry, we carried out biophysical studies of the W188H mutant. Our stopped-flow data showed that the 420-nm intermediate was not only populated during the L-Arg reaction but also during the N-hydroxy-L-arginine reaction. Spectroscopic data and structural analysis demonstrated that the 420-nm intermediate is a hydroxide-bound ferric heme species that is stabilized by an out-of-plane distortion of the heme macrocycle and a cation radical centered on the tetrahydrobiopterin cofactor. The current data add important new insights into the previously proposed catalytic mechanism of NOS (Li, D., Kabir, M., Stuehr, D. J., Rousseau, D. L., and Yeh, S. R. (2007) J. Am. Chem. Soc. 129, 6943-6951).


Assuntos
Mutação de Sentido Incorreto , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico/química , Substituição de Aminoácidos , Animais , Catálise , Cristalografia por Raios X , Estabilidade Enzimática , Heme/química , Heme/genética , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
9.
Appl Environ Microbiol ; 78(24): 8623-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042177

RESUMO

Sporothrix schenckii is the etiological agent of sporotrichosis, the main subcutaneous mycosis in Latin America. Melanin is an important virulence factor of S. schenckii, which produces dihydroxynaphthalene melanin (DHN-melanin) in conidia and yeast cells. Additionally, l-dihydroxyphenylalanine (l-DOPA) can be used to enhance melanin production on these structures as well as on hyphae. Some fungi are able to synthesize another type of melanoid pigment, called pyomelanin, as a result of tyrosine catabolism. Since there is no information about tyrosine catabolism in Sporothrix spp., we cultured 73 strains, including representatives of newly described Sporothrix species of medical interest, such as S. brasiliensis, S. schenckii, and S. globosa, in minimal medium with tyrosine. All strains but one were able to produce a melanoid pigment with a negative charge in this culture medium after 9 days of incubation. An S. schenckii DHN-melanin mutant strain also produced pigment in the presence of tyrosine. Further analysis showed that pigment production occurs in both the filamentous and yeast phases, and pigment accumulates in supernatants during stationary-phase growth. Notably, sulcotrione inhibits pigment production. Melanin ghosts of wild-type and DHN mutant strains obtained when the fungus was cultured with tyrosine were similar to melanin ghosts yielded in the absence of the precursor, indicating that this melanin does not polymerize on the fungal cell wall. However, pyomelanin-producing fungal cells were more resistant to nitrogen-derived oxidants and to UV light. In conclusion, at least three species of the Sporothrix complex are able to produce pyomelanin in the presence of tyrosine, and this pigment might be involved in virulence.


Assuntos
Melaninas/metabolismo , Naftóis/metabolismo , Pigmentos Biológicos/metabolismo , Sporothrix/metabolismo , Tirosina/metabolismo , Meios de Cultura/química , Humanos , América Latina , Oxidantes/toxicidade , Sporothrix/efeitos dos fármacos , Sporothrix/isolamento & purificação , Sporothrix/efeitos da radiação , Esporotricose/microbiologia , Fatores de Tempo , Raios Ultravioleta , Fatores de Virulência/metabolismo
10.
J Am Chem Soc ; 134(10): 4753-61, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22296274

RESUMO

The reaction of oxidized bovine cytochrome c oxidase (bCcO) with hydrogen peroxide (H(2)O(2)) was studied by electron paramagnetic resonance (EPR) to determine the properties of radical intermediates. Two distinct radicals with widths of 12 and 46 G are directly observed by X-band EPR in the reaction of bCcO with H(2)O(2) at pH 6 and pH 8. High-frequency EPR (D-band) provides assignments to tyrosine for both radicals based on well-resolved g-tensors. The wide radical (46 G) exhibits g-values similar to a radical generated on L-Tyr by UV-irradiation and to tyrosyl radicals identified in many other enzyme systems. In contrast, the g-values of the narrow radical (12 G) deviate from L-Tyr in a trend akin to the radicals on tyrosines with substitutions at the ortho position. X-band EPR demonstrates that the two tyrosyl radicals differ in the orientation of their ß-methylene protons. The 12 G wide radical has minimal hyperfine structure and can be fit using parameters unique to the post-translationally modified Y244 in bCcO. The 46 G wide radical has extensive hyperfine structure and can be fit with parameters consistent with Y129. The results are supported by mixed quantum mechanics and molecular mechanics calculations. In addition to providing spectroscopic evidence of a radical formed on the post-translationally modified tyrosine in CcO, this study resolves the much debated controversy of whether the wide radical seen at low pH in the bovine enzyme is a tyrosine or tryptophan. The possible role of radical formation and migration in proton translocation is discussed.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Tirosina/química , Animais , Bovinos , Transporte de Íons , Modelos Moleculares , Oxirredução , Prótons , Teoria Quântica
11.
J Magn Reson ; 213(1): 32-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21944735

RESUMO

In this investigation high-frequency electron paramagnetic resonance spectroscopy (HFEPR) in conjunction with innovative rapid freeze-quench (RFQ) technology is employed to study the exchange-coupled thiyl radical-cob(II)alamin system in ribonucleotide reductase from a prokaryote Lactobacillus leichmannii. The size of the exchange coupling (Jex) and the values of the thiyl radical g tensor are refined, while confirming the previously determined (Gerfen et al. (1996) [20]) distance between the paramagnets. Conclusions relevant to ribonucleotide reductase catalysis and the architecture of the active site are presented. A key part of this work has been the development of a unique RFQ apparatus for the preparation of millisecond quench time RFQ samples which can be packed into small (0.5 mm ID) sample tubes used for CW and pulsed HFEPR--lack of this ability has heretofore precluded such studies. The technology is compatible with a broad range of spectroscopic techniques and can be readily adopted by other laboratories.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lactobacillus leichmannii/enzimologia , Ribonucleotídeo Redutases/química , Algoritmos , Anaerobiose , Anisotropia , Domínio Catalítico , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Congelamento , Genes Bacterianos , Indicadores e Reagentes , Lactobacillus leichmannii/genética , Plasmídeos/química , Plasmídeos/genética , Pós , Temperatura , Vitamina B 12/química
12.
Biochim Biophys Acta ; 1807(10): 1295-304, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21718686

RESUMO

The formation of radicals in bovine cytochrome c oxidase (bCcO), during the O(2) redox chemistry and proton translocation, is an unresolved controversial issue. To determine if radicals are formed in the catalytic reaction of bCcO under single turnover conditions, the reaction of O(2) with the enzyme, reduced by either ascorbate or dithionite, was initiated in a custom-built rapid freeze quenching (RFQ) device and the products were trapped at 77K at reaction times ranging from 50µs to 6ms. Additional samples were hand mixed to attain multiple turnover conditions and quenched with a reaction time of minutes. X-band (9GHz) continuous wave electron paramagnetic resonance (CW-EPR) spectra of the reaction products revealed the formation of a narrow radical with both reductants. D-band (130GHz) pulsed EPR spectra allowed for the determination of the g-tensor principal values and revealed that when ascorbate was used as the reductant the dominant radical species was localized on the ascorbyl moiety, and when dithionite was used as the reductant the radical was the SO(2)(-) ion. When the contributions from the reductants are subtracted from the spectra, no evidence for a protein-based radical could be found in the reaction of O(2) with reduced bCcO. As a surrogate for radicals formed on reaction intermediates, the reaction of hydrogen peroxide (H(2)O(2)) with oxidized bCcO was studied at pH 6 and pH 8 by trapping the products at 50µs with the RFQ device to determine the initial reaction events. For comparison, radicals formed after several minutes of incubation were also examined, and X-band and D-band analysis led to the identification of radicals on Tyr-244 and Tyr-129. In the RFQ measurements, a peroxyl (ROO) species was formed, presumably by the reaction between O(2) and an amino acid-based radical. It is postulated that Tyr-129 may play a central role as a proton loading site during proton translocation by ejecting a proton upon formation of the radical species and then becoming reprotonated during its reduction via a chain of three water molecules originating from the region of the propionate groups of heme a(3). This article is part of a Special Issue entitled: "Allosteric cooperativity in respiratory proteins".


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Peróxidos/metabolismo , Animais , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Sítios de Ligação , Biocatálise , Bovinos , Cobre/química , Cobre/metabolismo , Ditionita/química , Ditionita/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/química , Radicais Livres/química , Radicais Livres/metabolismo , Heme/química , Heme/metabolismo , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Modelos Químicos , Modelos Moleculares , Oxirredução , Oxigênio/química , Peróxidos/química , Ligação Proteica , Prótons , Tirosina/química , Tirosina/metabolismo
13.
J Inorg Biochem ; 105(3): 366-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21421123

RESUMO

Cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2 involves reaction of a peroxide-induced Tyr385 radical with arachidonic acid (AA) to form an AA radical that reacts with O(2). The potential for isomeric AA radicals and formation of an alternate tyrosyl radical at Tyr504 complicate analysis of radical intermediates. We compared the EPR spectra of PGHS-1 and -2 reacted with peroxide and AA or specifically deuterated AA in anaerobic, single-turnover experiments. With peroxide-treated PGHS-2, the carbon-centered radical observed after AA addition was consistently a pentadienyl radical; a variable wide-singlet (WS) contribution from mixture of Tyr385 and Tyr504 radicals was also present. Analogous reactions with PGHS-1 produced EPR signals consistent with varying proportions of pentadienyl and tyrosyl radicals, and two additional EPR signals. One, insensitive to oxygen exposure, is the narrow singlet tyrosyl radical with clear hyperfine features found previously in inhibitor-pretreated PGHS-1. The second type of EPR signal is a narrow singlet lacking detailed hyperfine features that disappeared upon oxygen exposure. This signal was previously ascribed to an allyl radical, but high field EPR analysis indicated that ~90% of the signal originates from a novel tyrosyl radical, with a small contribution from a carbon-centered species. The radical kinetics could be resolved by global analysis of EPR spectra of samples trapped at various times during anaerobic reaction of PGHS-1 with a mixture of peroxide and AA. The improved understanding of the dynamics of AA and tyrosyl radicals in PGHS-1 and -2 will be useful for elucidating details of the cyclooxygenase mechanism, particularly the H-transfer between tyrosyl radical and AA.


Assuntos
Ácido Araquidônico/química , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Radicais Livres/química , Alcadienos/química , Alcadienos/metabolismo , Ácido Araquidônico/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/metabolismo , Cinética , Oxigênio/metabolismo , Peróxidos/metabolismo , Especificidade por Substrato , Tirosina/química , Tirosina/metabolismo
14.
Biochemistry ; 49(10): 2159-66, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20131869

RESUMO

Regulation of the class IA PI 3-kinase involves inhibition and stabilization of the catalytic subunit (p110) by the regulatory subunit (p85). Regulation is achieved by two major contacts: a stable interface involving the adapter-binding domain (ABD) of p110 and the inter-SH2 (iSH2) domain of p85 and a regulatory interaction between the N-terminal SH2 (nSH2) domain of p85 and the helical domain of p110. In the present study, we have examined the relative orientation of the nSH2 and iSH2 of p85alpha using site-directed spin labeling and pulsed EPR. Surprisingly, both distance measurements and distance distributions suggest that the nSH2 domain is highly disordered relative to the iSH2 domain. Molecular modeling based on EPR distance restraints suggests that the nSH2 domain moves in a hinge-like manner, sampling a torus space around the proximal end of the iSH2 domain. These data have important implications for the mechanism by which p85/p110 dimers are regulated by phosphopeptides.


Assuntos
Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/classificação , Domínios de Homologia de src , Algoritmos , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Método de Monte Carlo , Movimento , Óxidos de Nitrogênio/química , Fosfatidilinositol 3-Quinases/metabolismo , Marcadores de Spin
15.
Biochemistry ; 49(7): 1396-403, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20088568

RESUMO

Ribonucleotide reductase (RNR, 76 kDa) from Lactobacillus leichmannii is a class II RNR that requires adenosylcobalamin (AdoCbl) as a cofactor. It catalyzes the conversion of nucleoside triphosphates to deoxynucleotides and is 100% inactivated by 1 equiv of 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate (F(2)CTP) in <2 min. Sephadex G-50 chromatography of the inactivation reaction mixture for 2 min revealed that 0.47 equiv of a sugar moiety is covalently bound to RNR and 0.25 equiv of a cobalt(III) corrin is tightly associated, likely through a covalent interaction with C(419) (Co-S) in the active site of RNR [Lohman, G. J. S., and Stubbe, J. (2010) Biochemistry 49, DOI: 10.1021/bi902132u ]. After 1 h, a similar experiment revealed 0.45 equiv of the Co-S adduct associated with the protein. Thus, at least two pathways are associated with RNR inactivation: one associated with alkylation by the sugar of F(2)CTP and the second with AdoCbl destruction. To determine the fate of [1'-(3)H]F(2)CTP in the latter pathway, the reaction mixture at 2 min was reduced with NaBH(4) (NaB(2)H(4)) and the protein separated from the small molecules using a centrifugation device. The small molecules were dephosphorylated and analyzed by HPLC to reveal 0.25 equiv of a stereoisomer of cytidine, characterized by mass spectrometry and NMR spectroscopy, indicating the trapped nucleotide had lost both of its fluorides and gained an oxygen. High-field ENDOR studies with [1'-(2)H]F(2)CTP from the reaction quenched at 30 s revealed a radical that is nucleotide-based. The relationship between this radical and the trapped cytidine analogue provides insight into the nonalkylative pathway for RNR inactivation relative to the alkylative pathway.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Cobamidas/antagonistas & inibidores , Citidina Trifosfato/análogos & derivados , Inibidores Enzimáticos/química , Lactobacillus leichmannii/enzimologia , Nucleotídeos/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobamidas/química , Cobamidas/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/toxicidade , Ativação Enzimática , Inibidores Enzimáticos/toxicidade , Radicais Livres/metabolismo , Modelos Químicos , Nucleosídeos/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Ribose/química
16.
J Magn Reson ; 203(2): 213-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20056464

RESUMO

The reaction intermediates of reduced bovine Cytochrome c Oxidase (CcO) were trapped following its reaction with oxygen at 50 micros-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical (SO2(-.)), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2(-.) radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of g(x)=2.0068, g(y)=2.0066, and g(z)=2.0023. The SO2(-.) radical has rhombic symmetry with g-values of g(x)=2.0089, g(y)=2.0052, and g(z)=2.0017. When the contributions from the ascorbyl and SO2(-.) radicals were removed, no protein-based radical on CcO could be identified in the EPR spectra.


Assuntos
Ácido Desidroascórbico/análogos & derivados , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Complexo IV da Cadeia de Transporte de Elétrons/química , Oxigênio/química , Dióxido de Enxofre/química , Animais , Ânions , Sítios de Ligação , Ácido Desidroascórbico/química , Ativação Enzimática , Radicais Livres/química , Ligação Proteica , Suínos
17.
Proc Natl Acad Sci U S A ; 106(48): 20258-63, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19915146

RESUMO

We previously proposed a model of Class IA PI3K regulation in which p85 inhibition of p110alpha requires (i) an inhibitory contact between the p85 nSH2 domain and the p110alpha helical domain, and (ii) a contact between the p85 nSH2 and iSH2 domains that orients the nSH2 so as to inhibit p110alpha. We proposed that oncogenic truncations of p85 fail to inhibit p110 due to a loss of the iSH2-nSH2 contact. However, we now find that within the context of a minimal regulatory fragment of p85 (the nSH2-iSH2 fragment, termed p85ni), the nSH2 domain rotates much more freely (tau(c) approximately 12.7 ns) than it could if it were interacting rigidly with the iSH2 domain. These data are not compatible with our previous model. We therefore tested an alternative model in which oncogenic p85 truncations destabilize an interface between the p110alpha C2 domain (residue N345) and the p85 iSH2 domain (residues D560 and N564). p85ni-D560K/N564K shows reduced inhibition of p110alpha, similar to the truncated p85ni-572(STOP). Conversely, wild-type p85ni poorly inhibits p110alphaN345K. Strikingly, the p110alphaN345K mutant is inhibited to the same extent by the wild-type or truncated p85ni, suggesting that mutation of p110alpha-N345 is not additive with the p85ni-572(STOP) mutation. Similarly, the D560K/N564K mutation is not additive with the p85ni-572(STOP) mutant for downstream signaling or cellular transformation. Thus, our data suggests that mutations at the C2-iSH2 domain contact and truncations of the iSH2 domain, which are found in human tumors, both act by disrupting the C2-iSH2 domain interface.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína/genética , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Western Blotting , Linhagem Celular , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Biológicos , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética
18.
Biochemistry ; 48(5): 917-28, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19187034

RESUMO

Prostacyclin synthase (PGIS) is a membrane-bound class III cytochrome P450 that catalyzes an isomerization of prostaglandin H(2), an endoperoxide, to prostacyclin. We report here the characterization of the PGIS intermediates in reactions with other peroxides, peracetic acid (PA), and iodosylbenzene. Rapid-scan stopped-flow experiments revealed an intermediate with an absorption spectrum similar to that of compound ES (Cpd ES), which is an oxo-ferryl (Fe(IV)O) plus a protein-derived radical. Cpd ES, formed upon reaction with PA, has an X-band (9 GHz) EPR signal of g = 2.0047 and a half-saturation power, P(1/2), of 0.73 mW. High-field (130 GHz) EPR reveals the presence of two species of tyrosyl radicals in Cpd ES with their g-tensor components (g(x), g(y), g(z)) of 2.00970, 2.00433, 2.00211 and 2.00700, 2.00433, 2.00211 at a 1:2 ratio, indicating that one is involved in hydrogen bonding and the other is not. The line width of the g = 2 signal becomes narrower, while its P(1/2) value becomes smaller as the reaction proceeds, indicating migration of the unpaired electron to an alternative site. The rate of electron migration ( approximately 0.2 s(-1)) is similar to that of heme bleaching, suggesting the migration is associated with the enzymatic inactivation. Moreover, a g = 6 signal that is presumably a high-spin ferric species emerges after the appearance of the amino acid radical and subsequently decays at a rate comparable to that of enzymatic inactivation. This loss of the g = 6 species thus likely indicates another pathway leading to enzymatic inactivation. The inactivation, however, was prevented by the exogenous reductant guaiacol. The studies of PGIS with PA described herein provide a mechanistic model of a peroxidase reaction catalyzed by the class III cytochromes P450.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Radicais Livres/metabolismo , Oxirredutases Intramoleculares/metabolismo , Ácido Peracético/metabolismo , Peroxidases/metabolismo , Tirosina/análogos & derivados , Catálise , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/classificação , Humanos , Oxirredutases Intramoleculares/química , Iodobenzenos/metabolismo , Modelos Químicos , Ácido Peracético/química , Peroxidases/química , Peróxidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tirosina/metabolismo
19.
J Biol Chem ; 284(11): 7017-29, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19139099

RESUMO

A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.


Assuntos
Proteínas de Bactérias/química , Catalase/química , Heme/química , Peróxido de Hidrogênio/química , Modelos Químicos , Mycobacterium tuberculosis/enzimologia , Peroxidase/química , Proteínas de Bactérias/genética , Catalase/genética , Catálise , Heme/genética , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Mycobacterium tuberculosis/genética , Peroxidase/genética , Estrutura Terciária de Proteína/fisiologia
20.
J Biol Chem ; 282(9): 6255-64, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17204474

RESUMO

Catalase-peroxidase (KatG) from Mycobacterium tuberculosis, a Class I peroxidase, exhibits high catalase activity and peroxidase activity with various substrates and is responsible for activation of the commonly used antitubercular drug, isoniazid (INH). KatG readily forms amino acid-based radicals during turnover with alkyl peroxides, and this work focuses on extending the identification and characterization of radicals forming on the millisecond to second time scale. Rapid freeze-quench electron paramagnetic resonance spectroscopy (RFQ-EPR) reveals a change in the structure of the initially formed radical in the presence of INH. Heme pocket binding of the drug and knowledge that KatG[Y229F] lacks this signal provides evidence for radical formation on residue Tyr(229). High field RFQ-EPR spectroscopy confirmed a tryptophanyl radical signal, and new analyses of X-band RFQ-EPR spectra also established its presence. High field EPR spectroscopy also confirmed that the majority radical species is a tyrosyl radical. Site-directed mutagenesis, along with simulations of EPR spectra based on x-ray structural data for particular tyrosine and tryptophan residues, enabled assignments based on predicted hyperfine coupling parameters. KatG mutants W107F, Y229F, and the double mutant W107F/Y229F showed alteration in type and yield of radical species. Results are consistent with formation of a tyrosyl radical reasonably assigned to residue Tyr(229) within the first few milliseconds of turnover. This is followed by a mixture of tyrosyl and tryptophanyl radical species and finally to only a tyrosyl radical on residue Tyr(353), which lies more distant from the heme. The radical processing of enzyme lacking the Trp(107)-Tyr(229)-Met(255) adduct (found as a unique structural feature of catalase-peroxidases) is suggested to be a reasonable assignment of the phenomena.


Assuntos
Proteínas de Bactérias/química , Catalase/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons , Radicais Livres/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Catálise , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Fatores de Tempo , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...